
2196 IEEE Transactions on Nuclear Science, Vol NS-32, No. j, October 1985 

RELATION BETWEEN FIELD ENERGY AND RMS EMITlANCE IN 1NTENSE PARlICLE BEAMS* 

7. P. Wanyler, K. R. Crandall, R. S. Mills, and M. Reiser,?, AT-l, MS H817 
Los Alamos National Laboratory, Los Alamos. NM 87545 USA 7 

*University of Maryland, College Park, MD 20742, USA 

Summary 

An equation is presented for continuous beams 
with azimuthal symmetry and continuous linear focus- 
ing, which expresses a relationship between the rate 
of change for squared rms emittance and the rate of 
change for a quantity we call the nonlinear field en- 
erav. The nonlinear field energy depends on the shape 
of the charge distribution and corresponds to the re- 
sidual field energy possessed by beams with nonuniform 
charge distributions. The equation can be integrated 
for the case of an rms matched beam to yield a formula 
for space-charge-induced emittance growth that we have 
tested numerically for a variety of initial distribu- 
tions. The results provide a framework for discussing 
the scaling of rms emittance growth and an explanation 
for the well-established lower limit on output 
emittance. 

Introduction 

A quantitative understanding of emittance growth 
induced by space charge is of great importance for the 
design of high-current linear accelerators and beam 
transport systems. The first systematic numerical 
study of emittance growth for linac beams was done by 
Chasman,l and more recent studies were reported by 
Jameson and Mills.2 An interest in beam instabili- 
ties of periodic transport channels was stimulated by 
heavy-ion fusion requirements, and led to work re- 
cently reported by Hofmann. Laslett, Smith, and 
Haber.3 The mechanism of equipartitioning and emit- 
tance growth in linacs was studied by Hofmann and 
Bozsik4 and also by Jameson.s Reviews of this work 
have been presented by Jameson= and Hofmann.' 

In spite of these efforts, basic phenomena ob- 
served both in numerical studies and in unpublished 
experimental data have remained unexplained, and no 
clear explanation of many of the important effects has 
emerged. Until recently, little attention has been 
given to a comparison of rms emittance groWth for dif- 
ferent initial distributions. Recently, numerical 
studies were published by Struckmeier, Klabunde, and 
ReiserB for a continuous beam in a periodic channel, 
which led them to observe that some distributions ex- 
perience a rapid initial emittance growth that in- ' 
creases with beam intensity. These authors hypothe- 
sized that the observed emittance growth was associ- 
ated with a homogenization of the charge density and 
resulted in a conversion of space-charge field energy 
into transverse particle energy. They suggested that 
transverse energy conservation could be used to ob- 
tain a useful formula for emittance growth. Two for- 
mulas were presented, which were interpreted as upper 
and lower bounds on the emittance growth. 

The idea of space-charge field energy as a use- 
ful quantity has been suggested before. In 1970, 
Gluckstern, et al.* used electric-field energy com- 
parisons to investigate the relative stability of 
different stationary distributions. Electric-field 
energy relationships were considered in more detail by 
Lapostollelovll in his important work in 1971, which, 
together with work by Sacherer," resulted in a gener- 
alized rms envelope equation. Thus, stimulated by the 
suggestions of Struckmeier, Klabunde, and Reiser, we 
have attempted to extend the initial work of Lapostolle 
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and Sacherer, to investigate further the relationship 
between space-charge field energy and rms emittance 
for continuous beams in continuous focusing channels. 

RMS Emittance and Nonlinear Field Energy 

We consider the problem of a continuous, azi- 
muthally symmetric beam that propagates in the +z- 
direction at constant velocitv v. We assume that the 
beam is confined radially b; a continuous, linear, 
external focusing force and that the paraxial approx- 
imation is valid in which all particles have the same 
longitudinal velocity v >> vt, where vt is the trans- 
verse velocity component. We consider the character- 
istics of a steady.-state solution, where the charge 
density, current densitv. and fields have no explicit 
dependence on time. We"allow for initial phase&pace 
distributions that are not necessarily stationary, and 
in general, we expect that the charge density p(r,z) 
will evolve from an initial state at z = 0 to some 
final state, which may be stationary or independent 
of z. 

Maxwell's equations can be written using nonzero 
self-field components E,, E,, and 88, and current den- 
sity components jr and jz. A solution is easily ob- 
tained in the approximation that aE,/az << p/co, where 
co is the free-space permittivity, which leads to 

Bo(r,z) = " E (r,z) 
c2 r 

, 

and 
aEr(r,z) 

j,(r,z) = -cov az 

(1) 

(2) 

not ignored, but is deter- 
that$if.ds = 0, and by a 

The component EZ(r,z) is 
mined by the requirement 
boundary condition such as a perfectly conducting 
pipe that encloses the beam. 

The second moments ofhe charge distribution in 

x,x' phase space are x2, xl2 and, xx'. It can be 
shown that the derivatives of the moments m func- 
tions of the moments and of the values of xF, and 
x'F,. where F, is the x-component of the total force, 
the sum of the external plus the self-force.11l12 
The definition of rms emittance c in x.x' phase- 
space, given by Lapostolle. can be shown to correspond 
to the total emittance of a continuous equivalent 
uniform beam (same second moments as the real beam) 
and is given by 

-- 

c = 4(x2 xl2 _ ,,1y2 

The rms emittance represents a convenient measure of 
the macroscopic or effective emittance of a beam sub- 
jected to nonlinear forces that arise either from ex- 
ternal or self-fields." If Eq. (3) is differentiated 
and if the external force is assumed to be linear, it 
can be shown that 

2 dc- 32 -if----- 
dz -2 

(x x'F 
sx 

- xx' xFsx) , 

where m is the mass, and y = (1 - v2/c2)-l. For 
beam particles with charge e, F,, =, eEx/-f2 is the 
x-component of the self-force, including both elec- 
tric and magneticterms, which have opposite signs. 
Sacherer derived xFsx for an arbitrary charge dis- 
tribution with elliptical symmetry, and his result 
can be written 

(4) 
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-- 
XF 5 = 2wo/Nr2 , (5) 

where N is number of particles per unit length and 

W = (eN) 2 
0 

/lb*& 
0 . 

The value of x'Fs, can be derived using Eq. (2), 
which leads to 

1 dW x'F =_-- 
5X 2Ny* dz ' 

where 

w = llc r EF dr 

(6) 

(7) 

(8) 

is the self--electric field energy per unit length as- 
sociated with the radial electric field. With an in- 
finite value for the upper limit to the integral of 
Eq. (8), we find that the field energy W diverges. 
However, only field energy changes or field energy 
differences will be important. Therefore, because 
the electric field outside the beam is independent of 
the charge density, the infinite upper limit can be 
replaced by any finite radius larger than the actual 
beam. For a uniform beam, we write the field energy 
as w,, and for a volume within a radius b (larger than 
the beam) we obtain 

W, = w,(l + 4 In b/X) , and b L X , (9) 

where X, defined by X = 2 is the total beam 
radius for a uniform beam. 

Using these results, Eq. (4) can be written as 

dc 2 
-= - 
dz (‘0) 

where X (twice the rms beam size) is interpreted as 
the total beam radius of the equivalent uniform beam, 
K is the generalized perveance given by 

Kc e1 , 
2nromv3y3 

(‘1) 

and 

u=w-wu . (12) 

We learned recently that a form equivalent to 
Eq. (10) was included by Lapostolle in Refs. 10 and 
11. Instead of U/w,, Lapostolle's equation uses a 
field-energy correction term, c2, which can be shown 
to be linearly related to U/w,. We also learned that 
a similar equation was obtained by Lee, Yu, and 
Barletta14 for a beam with no external focusing. 

The quantity U is the difference between the 
self-electric field energies per unit length of the 
distribution and of the equivalent uniform beam. The 
special role of the uniform distribution can be ex- 
plained by its associated linear self-force, which 
causes no rms emittance growth. Thus, U is the resid- 
ual self-electric field energy possessed by beams with 
nonuniform charge distributions. Because nonuniform 
beams have nonlinear self-fields, we call U the non- 
linear field energy. Equation (10) implies that a 

2197 

decrease in nonllnear field energy U corresponds to 
an increase in rms emittance. Both the electric- and 
magnetic-field contributions are contained in Eq. (10) 
by including the factor Y3 in the definition of K (Y2 
accounts for the magnetic field and y accounts for 
relativistic mass). Although the total electromagnetic 
stored energy is the sum of electric plus magnetic 
terms, it is the difference that is related to changes 
in transverse rms emittance. This is because the 
transverse electric and magnetic self-force terms have 
opposite signs. Therefore, rms emittance growth, in- 
duced by space charge, is inherently a nonrelativistic 
effect; it is most important when y is near unity. 

From Eq. (9). w. is the self-electric field energy 
per unit length within the beam boundary of an equiva- 
lent uniform beam. The quantity U/w, is dimensionless, 
and its properties can easily be demonstrated by con- 
sidering the example.of a power-law charge distribu- 
tion. We find that U/w, is zero for a uniform charge 
distribution and is positive both for peaked and 
hollow distributions, increasing as the distribution 
becomes more nonuniform. Furthermore, U/w, is inde- 
pendent of both beam current and rms beam size, and is 
a function only of the shape of the distribution. 
Thus, Eq. (10) shows that rms emittance changes are 
associated with three separate factors: rms beam 
size, perveance, and changes in shape of the charge 
distribution. Values of U/w, are given for exampie 
distributions in Table I. These distributions are 
listed in order from most peaked to most hollow. 

TABLE I 

U/w, FOR SOME COMMON DISTRIBUTIONS 

Distribution Function Charge Density p(r) u/w, 

Gaussian exp (-r2/a) 0.154 
Waterbag 1 - (r/R)2 r'R 0.0224 
Uniform 1 

r2 
r<R 0.000 

Hollow (n = 2) r<R 0.0754 
Hollow (n = 10) r10 r<R 0.245 

Equation (10) can be easily integrated, if we as- 
sume an rms-matched beam with constant X. The result 
ing relation between rms emittance and nonlinear field 
energy can be expressed as 

;=[, -‘“,;y ($- j” , (13) 

where w. is the zero-current betatron frequency, wi is 
the initial betatron frequency for the eouivalent uni- 
form beam (including space charge), and ii and Ui are 
initial values of rms emittance and nonlinear field 
energy. In Eq. (13), the rms emittance is expressed 
as the product of two factors, one, (U - Ui)/Wo, re- 
lated to the change in the shape of the distribution, 
and one related to the initial betatron tune ratio 
WI loo. It is easy to show that the tune ratio is 

Wi/Oo = K-Z- u, where a space-charge parameter 
U = KV/2ciwo. 

We also find that an expression for transverse 
energy conservation can be deri-vedAsing the assump- 
tions given above. 
stant, where V, 

We obtain T + V, + W/Nr2 = con- 
is the average potential energy asso- 

ciated with the external force, and the average trans- 

verse kinetic energy is T = mrv2x12 for an azimuthally 
symmetric beam in the paraxial approxbation. In the 
limit of a perfect rms matched beam, V, and W, are 
constant, so that a decrease in U (and therefore W) 
corresponds to an increase in T. In general, an ini- 
tial rms-matched beam will not remain exactly matched 
if the rms emittance grows. 



Numerical Studies 

We have made numerical studies using 1000 beam 
? particles per calculation to investigate the effects 

described above using a computer code written espe- 
cially for this problem. We have studied azimuthally 
symmetric beams with different rms-matched initial 
distributions. At each time step, the particles were 
given transverse deflections based on both the 
external- and self-forces. The radial self-forces 
were calculated from Gauss' law, assuming infinitely 
long cylindrical charge distributions. The objectives 
were to study the evolution of the beam distribution, 
U/w, and E for different initial distributions and, 
different tune ratios wi/wo. We show two examples 
that illustrate the main results. 

First, we present results for a space-charge- 
dominated beam with initial Gaussian distributions, 
both in position and divergence, truncated at two 
standard deviations and with an initial tune ratio 
Wj /Wo = 0.02. We have introduced a radial distrlbu- 
tion parameter, defined-as p = 1 - r/ru, where r is 
the average radius and ru is the average radius for 
the equivalent (same second moments) uniform beam. 
For simple distributions, we find that p Is positive 
for a peaked charge distribution, zero for a uniform 
beam, and negative for a hollow beam. However, the 
parameter p must be interpreted with caution, because 
in some cases the distributions are too complicated for 
such a simple characterization. Figures la and lb show 
p and U/w, as. a function of distance z/hp along the 
beamline, where a plasma length, Xp = (2n2X2/Kr2)1/2, 
is the distance the beam travels during one plasma 
period. The parameter p indicates that the beam dis- 
tribution undergoes damped radial oscillations between 
peaked and hollow configurations at the plasma fre- 
quency, a result that is confirmed by a more detailed 
examination of the charge distributions. The quantity 
U/w, is maximum at both the extreme peaked and hollow 
configurations, and therefore oscillates at twice the 
frequency of the parameter p. The minimum value of 
U/w, during these oscillations generally is not the 
zero value expected for an exactly uniform charge dis- 
tribution. Examination of the beam cross section (not 
shown) when U/w, is minimum reveals the formation of a 
predominantly uniform beam, plus a low-density halo. 
We believe that two effects contribute to the nonzero 
minimum values of U/w,, the low-density halo, and a 
numerical error caused by statistical fluctuations in 
the charge distribution. Statistical fluctuations 
also appear to contribute to some of the details of 
the curves in Fig. 1, beyond about five plasma oscil- 
lations. Figure lc shows the emittance ratio C/'ci as 
a function of z/hp. Two overlapping curves are shown, 
one obtained from Eq. (3) with an evaluation of second 
moments, and the other from evaluation of IJ and using 
Eq. (13). The two curves are in excellent agreement 
and show a rapid initial growth that occurs during the 
first quarter of the first plasma period. A closer 
examination shows that the two curves are not in exact 
agreement, because of a slight mismatch caused by the 
emittance growth, an effect that is not included in 
the derivation of Eq. (13). 

A second numerical example is shown in Fig. 2 
for a beam with an initial semi-Gaussian or thermal 
distribution, corresponding to uniform charge density, 
Gaussian distribution in velocity space (truncated at 
four standard deviations), and with an initial tune 
ratio Wi/Wo = 0.25. Figures 2a and 2b show p and U/w, 
versus z/hp. The parameter p rises from its initial 
value of zero to remain positive throughout, indicat- 
ing a peaked distribution. An examination of the 
charge distribution reveals that the initial hard- 
edged beam evolved rapidly to one with a tail or soft 
edge. The quantity U/w, increases, which would imply 
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Fig. 1. Results of numerical simulation for an Initial Gaussian 
charge dlstrlbutlon. truncated at two standard deviations, and Ini- 
tlal tune ratio w~/o, = 0.02. 
along the beamline. where hp 

The abscissa Is the distance z/Ap 
Is the distance the beam travels in 

one plasma perlod. (a) Oimenslonless radial distribution parameter 
p, defined In the text. Is positlve for a peaked charge dlstrlbu- 
tlon, zero for a unlfon beam, and negative for a hollow beam. 
(b) Dlmenslonless nonlinear field energy U/u,. (c) Emlttance 
ratio ~/cl. There are two overlapplng curves. The square symbols 
correspond to emlttance calculated from second moments at each 
step, using Eq. (3). The triangles correspond to enlttance calcu- 
lated from nonlinear field energy at each step, using Eq. (13). 
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Flg. 2. Results of numerical simulation for an initial semi- 
Gaussian or thermal dlstrlbution. truncated at four standard devi- 
ations in velocity space, and Initial tune ratio Y~/w, - 0.25. The 
quantities plotted are the same as in Flg. 1. 



an emittance decrease according to Eq. (13). fig- 
ure 2c shows the rms emittance ratio E/E~. Again, 
the two overlapping curves, one from Eq. (3) and the 
other from Eq. (13). are in excellent agreement, and 
both show a small decrease in the rms emittance. 
Thus, we conclude that not only can the rms emittance 
increase as the beam becomes more uniform, but also 
an rms emittance decrease is possible when the beam 
becomes less uniform. As in the previous example, 
damped oscillations are observed, but at present, we 
have no quantitative explanation of oscillation fre- 
quencies for beams that are not highly space-charge 
dominated. 

Numerical studies have been made for other ini- 
tial distributions and tune ratios and for distances 
up to 100 plasma lengths. Our interpretation of these 
results is that the initially rms-matched beam under- 
goes damped radial oscillations and evolves to a final 
state with a central core and sometimes with a low- 
density halo that contains a few per cent of the beam. 
The final charge density and final U/w, depend on the 
initial phase-space distribution and on the initial 
tune ratio. Therefore, Eq. (13) implies that the rms 
emittance growth ratio for a given initial phase-space 
distribution is a function only of the initial tune 
ratio. 

Equations (10) and (13) describe rms emittance 
variation caused by any change in U/w, (associated 
with a change in the shape of the charge distribution) 
regardless of the detailed mechanism. In particular, 
unstable oscillation modes of the charge density, 
which are a well known property of the Kapchinskii- 
Vladimirskii (K-V) distribution below certain tune- 
ratio thresholds,15 can cause such changes in charge 
density. We have seen evidence for such instabili- 
ties in our numerical studies for an initial K-V beam. 
In such cases, we find that the charge density changes 
from the initial K-V uniform density to a nonuniform, 
slightly peaked configuration. As in the semi- 
Gaussian example described above, we observe an in- 
crease in U/w, and a small decrease in rms emittance. 

Final, Uniform Charge-Density Approximation 

In spite of the excellent agreement of Eq. (13) 
with the numerical simulation results, we are unable 
to predict the final rms emittance growth unless the 
final value of U/w, is known. In the extreme space- 
charge limit when' wi and ci approach zero, we expect 
that the beam will evolve towards a final stationary 
state with a uniform charge distribution to obtain 
complete shielding of the linear applied focusing 
force. As an approximation for all initial tune ra- 
tios, we will assume that in the final state, U/w, = 0, 
which corresponds to a uniform beam with no halo. 
This approximation should be good in the space-charge- 
dominated limit, where the emittance growth is largest; 
in the emittance-dominated limit, where the approxim- 
ation could lead to a large error in emittance growth, 
the emittance growth itself is small. In all cases, 
the approximation will result in an overestimate of 
the emittance growth. 

With this approximation, the final emittance for 
an rms-matched beam can be written directly from 
Eq. (13) as 

q1 &-(+)I”’ . (14) 
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This equation corresponds to the upper limit emittance 
growth formula, derived by Struckmeier, Klabunde, and 
Relser,B If betatron frequencies are replaced by phase 
advances per quadrupole focusing period. We note that 
Eq. (14) depends on the properties of the initial beam, 
which can be easily calculated. 

For a space-charge-dominated beam, Eq. (14) can 
be written as 

2 Ef = cf f $ Kv 
2 

(H 

"i\ 

*0 Wo) . 
(15) 

This result implies that as ci approaches zero, the 
final emittance approaches a minimum value that de- 
creases with increased focusing force (larger wo), in- 
creases with perveance K, and increases with initial 
nonuniformity as measured by Ui/Wo. This formula pro- 
vides a quantitative description of the familiar lower 
limit on final emittance similar to that first report- 
ed in numerical studies by Chasmanl for linear 
accelerator beams. 

Numerical results have been used to test 
Eqs. (14) and (15). As an example, Fig. 3 shows 
Cf/Ci versus wi/wo for an initial Gaussian distribu- 
tion, truncated at four standard deviations. Values 
from the particle simulations are plotted and are in 
good agreement with the curve from Eq. (14). 
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Fig. 3. Final emlttance ratio versus inltiai tune ratio for an in- 
itial Gausslan distribution. truncated at four standard deviations. 
The curve Is generated from the approximate formula, Eq. (14), and 
the plus symbols show the results of the particle simulations after 
100 plasma periods. 

Therefore, we conclude that emittance growth can be 
approximately predicted in advance from a knowledge 
only of the initial tune ratio and the initial value 
of u/w,. A comparison of Eq. (15) with numerical par- 
ticle simulations is shown in Fig. 4, where Cf versus 
ci is plotted for the same initial truncated Gaussian 
distribution at a value of Kv/w, = 5.0 x 10e5 m. The 
results from the simulation and the curve from 
Eq. (15) are, again, in close agreement. 
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Fig. 4. Final emittance Versus lnltial emittance For an Initial 
Gaussian distribution truncated at four standard devlations. The 
curve is generated from the approximate formula, Eq. (15). for a 
value Kv/uo = 5.0 x 10-5 m. and the plus symbols show the results 
of particle simulations after 100 plasma periods. 

Conclusions 

We have attempted to evaluate the ideas expressed 
by Struckmeier, Klabunde, and Reiser* that emittance 
growth is associated with the conversion of field en- 
ergy to particle energy. We find that transverse en- 
ergy conservation is valid for continuous channels, 
using the approximations given in this paper. We have 
obtained a formula, Eq. (lo), which shows that rms 
emittance changes can be related to three separate 
factors: rms beam size, perveance, and changes in a 
quantity we call the nonlinear field energy, a quan- 
tity that depends on the shape of the charge distri- 
bution and corresponds to the residual space-charge 
electric-field energy of beams with nonuniform charge 
distributions. When integrated for the case of an 
rms-matched beam, we obtained Eq. (13). which is in 
excellent agreement with our numerical simulation 
studies. Furthermore, we have'seen that this approach 
has led to good approximate formulas, including one 
that describes the well-known effect of minimum out- 
put emittance with decreasing input emittance. 

The numerical studies reported In this paper have 
shown that the beams evolve to final states that are 
composed of a central core and a small halo, and that 
the emittance growth occurs within about one-quarter 
of a plasma period for high-intensity beams. From the 
numerical studies, we have seen examples of both the 
charge-density homogenization effects described by 
Ref. 8, resulting in an rms emittance increase, and 
of the reverse process, where the charge distribution 
evolves to one that is less uniform, resulting in a 
slight rms emittance decrease. The homogenization 
effect is a characteristic of peaked initial distri- 
butions in a highly space-charge-dominated case, 
whereas initially uniform distributions will become 
more nonuniform in a less space-charge-dominated 
situation, leading to a small rms emittance decrease. 
Equations (10) and (13) imply that rms emittance 
growth can be minimized by minimizing any decrease in 
the nonlinear field energy U. This can be done by 
producing the beam with an initial uniform charge 
distribution. 

The studies of Ref. 8 were made for continuous 
beams in periodic quadrupole channels, and the results 
described in this paper apply for continuous beams in 
continuous focusing channels. Because continuous 
focusing channels represent a smooth approximation 
representation of a periodic channel, we anticipate 
that our results will be approximately valid for 
periodic systems in a smooth approximation, if the 
betatron frequencies w. and 01 are replaced by phase 
advances per focusing period a0 and ai. We plan to 
conduct further numerical studies to test the formulas 
for periodic systems. 
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